17CS3104 - COMPILER DESIGN
	Course
Category:
	Program Core
	Credits:
	4

	Course
 Type:
	Theory
	Lecture-Tutorial-Practical:
	3-2-0

	Prerequisite:
	Basics of Programming Languages and Theory of Computation.
	Sessional Evaluation:
Univ. Exam Evaluation:
Total Marks:
	40
60
100

	Objectives
	· To make the student to understand the process involved in compilation.
· Creating awareness among students on various types of bottom up parsers.
· [bookmark: _GoBack]Understand the syntax analysis, intermediate code generation, type checking, and the role of symbol table etc.

	Course Outcomes
	Upon successful completion of the course, the students will be able to:

	
	CO1
	Understand the basics of Compiler Design and the role of Lexical Analyzer

	
	CO2
	Study various Syntax analyzers, grammar rules, LR and CLR parsing techniques

	
	CO3
	Get exposure on syntax translation and type checking mechanisms to be motivated to develop interpreters or compiles.

	
	CO4
	Identify various storage allocation strategies, intermediate code generation and their applicability

	
	CO5
	Acquire knowledge on code generation and Run-time storage Management

	
	CO6
	 Explore the principal sources of optimization and code Improving Transformations in a broader perspective.

	Course Content
	
UNIT-I

Introduction to Compiling: Compilers, Analysis of the Source program. Phases of a compiler, Cousins of the Compiler. Grouping of phases, Compiler construction tools.

Lexical Analysis: Role of the analyzer. Input buffering, Specification of tokens, Recognition of tokens, A language for Specifying Lexical analyzer.

UNIT-II
Syntax Analysis: Role of the parser, Context-free grammars, Writing a grammar, Top-down parsing, Bottom-up parsing, Operator-precedence parsing, LR parsers. Using ambiguous grammars, Parser generators.

UNIT-III

Syntax Directed Translation: Syntax-directed definitions, Construction of syntax trees, Bottom-up evaluation of S-attributed definitions. L-attributed definitions. Top-down translations. Bottom-up evaluation of inherited attributes.
.
Type Checking: Type systems, Specification of simple type checker. Equivalence of type expressions, Type conversions, Overloading of functions and operators, Polymorphic functions
UNIT-IV

Run-Time Environments: Source Language issues, Storage organization, Storage-allocation strategies. Access to non-local names. Symbol tables, Language facilities for dynamic storage allocation. Dynamic storage allocation techniques.
Intermediate Code generation: Intermediate languages. Declarations, Assignment statements.
UNIT-V

Code Generation: Issues in the Design of a code generator, The target machine, Run-time storage management, Basic blocks and flow graphs, Next-use information, A simple code generator, Register allocation and assignment.

UNIT-VI
Code Optimization: Introduction. The principle source of optimization, Optimization of basic blocks, Loops in flow graphs, Introduction to global data-flow analysis, code improving transformations

	Text Books &
 References
Books
		TEXT BOOKS

	1. Alfred V.Aho, Ravi Sethi, and Jeffrey D.Ullman, Compilers-Principles, Techniques and Tools, Pearson Education, 2004...

	

	REFERENCE BOOKS

 1. Alfred V.Aho, Jeffrey D.Ullman, Principles of Compiler Design, Narosa Publications.
 2. J.P.Benne, Introduction to compiling Techniques, 2nd Edition, Tata Mc Graw Hill.

	E-Resources
	1. https://nptel.ac.in/courses
1. https://freevideolectures.com/university//iitm

